Code No.: 16349 N

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD Accredited by NAAC with A++ Grade

B.E. (E.E.E.) VI-Semester Main Examinations, May/June-2023

Linear Integrated Circuits & Applications

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 Marks)$

Q. No.	Stem of the question	M	L	CO	PO
1.	Determine the feed back resistance of an amplifier with gain of -10 and input resistance equal to 10 k Ω .	2	3	1	1,2,3
2.	Define Slew rate of an op-amp.	2	1	1	1,2,3
3.	Describe the essential features of an instrumentation amplifier.	2	1	2	1,2,3
4.	Draw the circuit diagram of zero crossing detector using op-amp.	2	1	2	1,2,3
5.	What should be the amplifier gain for generating sustained oscillations in case of phase shift oscillator.	2	1	3	1,2,3
6.	Write the applications of Voltage Controlled Oscillator.	2	1	3	1,2,3
7.	Determine the output voltage for the regulator shown in figure.	2	3	4	1,2,3
	V _{Ref}				
	Distinguish between Pulse Width Modulation and Pulse Frequency Modulation.	2	2	4	1,2,3
9.	Which filter can act as phase corrector?	2	1	5	1,2,3
	Design a low pass filter at a cut off frequency of 1kHZ with pass band	2	3	5	1,2,3
8	gain of 2.				

	Part-B $(5 \times 8 = 40 \text{ Marks})$				
1. a)	Find V ₀ for the adder-subtractor circuit shown in figure.	5	3	1	1,2,3
8 2	V, = 2 V 0 40 k 50 k				
	V ₂ = 3 V 0				
	V ₃ = 4 V 0 10 k V. + V _o				
	V ₄ = 5 V O 20 k 30 k				
	\}				
b)	Discuss pole zero frequency compensation technique	3	2	1	1,2,3
12. a)	With a neat circuit diagram, discuss the working of a positive clipper having reference voltage +V _{ref}	4	2	2	1,2,3
b)	Draw the circuit of a full wave rectifier using Op-Amp and explain it's operation.	4	2	2	1,2,
13. a)	Discuss the monostable mode of operation of 555 timer with neat circuit diagram and waveforms.	4	2	3	1,2,
b)	In the Astable Multivibrator shown in figure $R_1 = 2.2~k\Omega$, $R_2 = 3.9~k\Omega$, and $C = 0.1~\mu F$. Determine the positive pulse width t_c , negative pulse width t_d and running frequency f_0 .	4	3	3	1,2,
	Vcc				
	R ₁ 4 8 Output	語			
	R ₂ 555				
	c				
	<u> </u>				
14. a)	Explain the operation of a shunt voltage regulator with a neat circuit diagram.	4	2	4	1,2

Code No.: 16349 N

b)	Prove that using current foldback protection scheme short circuit current can be maintained at a value lower than rated current for voltage regulators.	4	3	4	1,2,
15. a)	Explain the concept of switched capacitor filter and draw circuit configuration of realizing a Resistor.	4	2	5	1,2,
b)	Design a wide band pass filter having f_L =400 Hz, f_H =2 kHz and pass band gain = 4.	4	3	5	1,2,
16. a)	Draw the internal block diagram of an Op-Amp and explain the function of each stage.	4	1	1	1,2,
b)	A Schmitt trigger with the upper threshold level V_{UT} =0 V and hysteresis width V_H =0.2 V converts a 1 kHz sine wave of amplitude 4Vpp into a square wave. Calculate the time duration of the negative and positive portion of the output wave form.	4	3	2	1,2,3
17.	Answer any two of the following:				
a)	With a neat block diagram explain the working of phase locked loop.	4	2	3	1,2,3
b)	Discuss the working of Buck switching regulator.	4	2	4	1,2,3
c)	Design a narrow band pass filter so that f _c =1 kHz Q=3 and A _F =10.	4	3	5	1,2,3

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome;

PO: Programme Outcome

i)	Blooms Taxonomy Level - 1	
ii)	Places T	21%
	Blooms Taxonomy Level – 2	38.21%
iii)	Blooms Taxonomy Level – 3 & 4	
	7 20101 3 60 4	40.79%